The limit points of Laplacian spectra of graphs
نویسندگان
چکیده
منابع مشابه
THE SPECTRAL DETERMINATION OF THE MULTICONE GRAPHS Kw ▽ C WITH RESPECT TO THEIR SIGNLESS LAPLACIAN SPECTRA
The main aim of this study is to characterize new classes of multicone graphs which are determined by their signless Laplacian spectra. A multicone graph is defined to be the join of a clique and a regular graph. Let C and K w denote the Clebsch graph and a complete graph on w vertices, respectively. In this paper, we show that the multicone graphs K w ▽C are determined by their signless ...
متن کاملOn the Laplacian Spectra of Graphs
We first establish the relationship between the largest eigenvalue of the Laplacian matrix of a graph and its bipartite density. Then we present lower and upper bounds for the largest Laplacian eigenvalue of a graph in terms of its largest degree and diameter.
متن کاملComputing the Laplacian spectra of some graphs
In this paper we give a simple characterization of the Laplacian spectra of a family of graphs as the eigenvalues of symmetric tridiagonal matrices. In addition, we apply our result to obtain an upper and lower bounds for the Laplacian-energy-like invariant of these graphs. The class of graphs considered are obtained by copies of modified generalized Bethe trees (obtained by joining the vertice...
متن کاملLimit points for normalized Laplacian eigenvalues
Limit points for the positive eigenvalues of the normalized Laplacian matrix of a graph are considered. Specifically, it is shown that the set of limit points for the j-th smallest such eigenvalues is equal to [0, 1], while the set of limit points for the j-th largest such eigenvalues is equal to [1, 2]. Limit points for certain functions of the eigenvalues, motivated by considerations for rand...
متن کاملSeidel Signless Laplacian Energy of Graphs
Let $S(G)$ be the Seidel matrix of a graph $G$ of order $n$ and let $D_S(G)=diag(n-1-2d_1, n-1-2d_2,ldots, n-1-2d_n)$ be the diagonal matrix with $d_i$ denoting the degree of a vertex $v_i$ in $G$. The Seidel Laplacian matrix of $G$ is defined as $SL(G)=D_S(G)-S(G)$ and the Seidel signless Laplacian matrix as $SL^+(G)=D_S(G)+S(G)$. The Seidel signless Laplacian energy $E_{SL^+...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 2003
ISSN: 0024-3795
DOI: 10.1016/s0024-3795(02)00508-6